在不少90后的童年回忆中,都有一套名叫《冒险小虎队》的书,和一张神秘的“解密卡”。每当小说扣人心弦的故事进入高潮时,书页上的下一段突然没有了文字,而是出现一堆杂乱无章的条纹,“想知道接下来发生了什么?请取出解密卡”。
覆盖上这张特制的小卡片,谜底就从无序的花纹中浮现出来,这到底是怎么回事?其实,同样的现象你可能天天都会在生活中遇到——就在你掏出手机拍摄屏幕的时候。
在下面的图中,我们会看到A和B两个竖条纹图案,它们看上去很相似,但条纹的频率稍有不同——在这里,频率用于描述空间维度。
下面,我们把A和B叠在一起。得到的结果C并不会让你产生密集恐惧症,反倒不难发现,图案里细栅栏好像共同组成了一些巨粗无比的立柱。
两个高频率图案的邂逅到一起,会“自甘堕落”,衍生出低频率的图案效果,这就是摩尔纹效应。从数学上来说,两个频率接近但不同的余弦周期函数相乘,结果中会出现他们之间频率差值的低频周期信号。
当然,这些高频率图案不一定非要是条形的。它们能是密集的点阵图案,也可以是密集的圆环,同样都可以制造出摩尔纹效应。
《冒险小虎队》书页上的条纹和解密卡上的条纹就分别相当于上面的A和B。其实原本书页上打印的图案里也包含着隐藏的文字,不过就像穿着迷彩服躲藏在树丛中的士兵一样,文字淹没在了密集条纹之中,人眼难以察觉。解密卡使用之后,在低频率摩尔纹映衬之下,原本隐藏的文字就暴露了出来。
事实上,各种拍摄和显示图像的数码设备普遍都是像素阵列结构。无论电视电脑的屏幕,扫描仪投影仪,还是手机和数码相机里面的传感器,都是由一个个周期性的像素单元组成,它们都可以看成是高频率阵列图案。
而当这些“高频率阵列图案”彼此组合,或者再遇上别的什么密密麻麻的细节图像,各种魔性的摩尔纹效果就出现了。
而生活中最烦人的还是拍摄手机/电脑屏幕时的摩尔纹,它们不止花纹魔性,而且还五彩斑斓。
这奇怪的颜色是怎么回事?要解释它,我们第一步要了解一下数码设备上彩色像素的组成。显示屏上的每一个像素,实际都是由相邻的红、绿、蓝三个像素组成,它们通过不同的明暗组合显示色彩。
这些像素尺寸和间距都很小,人眼并不能把它们区分开。但是,单独排列的三色像素就从另一方面代表着出现了三个不同的高频率阵列。这样一来,产生的摩尔纹就更为复杂了。
摩尔纹并不总是丑陋碍事的奇怪条纹,在艺术家与设计师手中,它们其实也有很美的一面。
日本平面设计师Takahiro Kurashima创作了一本书“Poemotion”,书上没有完整成形的图片,可只要覆盖上条纹状胶片,上下左右来回滑动,就能看到摩尔纹产生的奇幻效果,宛如纸上的游乐场。
而设计师John Leung则通过摩尔纹把静止的图像变成了一群游动的鲤鱼。只要一边移动视角,一边透过带有条纹的玻璃咖啡桌注视下方,就会看到鱼群摆尾的景象。
意大利设计师Andrea Minini也脑洞大开,使用类似摩尔纹的曲线,为不同动物绘制了一系列抽象肖像“Animals in Moiré“, 表现出了精致细腻的美感。
不只是“解密卡”或者“魔法鲤鱼”,摩尔纹还有更加高端的应用——比如说,可以用它来看清显微镜下十分微小的细节。
受摩尔纹启发,科学家们发明了一种名叫“结构光照明显微成像” (SIM)的技术。它可以超越普通光学显微镜的限制,看清尺度更小的细节。这种显微镜的使用方法是:每次给样本(比如微小的细胞)投影不同的高频率条纹光图案,样本的高频率细节纹理和投影光图案共同作用产生了低频率摩尔纹,前者原本是超出显微镜放大倍数的,无法被看清,可产生的低频率摩尔纹却是在显微镜放大倍数以内的,于是通过各种摩尔纹可以间接地还原出物体的细节是啥样子,使得显微镜相比于原本的放大极限更加放大很多倍。
将高频条纹光与不容易分辨的“高频细节”叠加,得到更容易分辨的低频图案,这种方法能帮研究者间接看清微小的细节
钱币的防伪识别也常会用到摩尔纹的原理。在2018年的电影《无双》中,周润发和郭富城饰演的假币制造团伙就遇到了不小的麻烦:即便使用高清打印机来复制假币,也会让钞票上产生摩尔纹瑕疵,容易被识破。这就是钞票上细密的条纹图案与打印的像素点阵叠加造成的结果。
不仅如此,就连手机拍屏幕时难看的条纹其实也可以“变废为宝”。近来,有研究者巧妙地利用了这种摩尔纹,设计了能预防被“盗扫”的二维码。我们在使用一部手机拍摄另一部电子设备屏幕时,摩尔纹常常会出现,并且和拍摄时两部手机的距离和角度都有关系,在研究者所设计的方案中,只有从特定的距离和角度拍摄,拍到的摩尔纹里才能提取出正确的二维码图案,否则就没办法看到受保护二维码的样子。