通用banner
您当前的位置 :首页 > 新闻资讯

基于JSM-35CF SEM的纳米电子束光刻系统实现与应用

2024-05-30 09:32:22 新闻资讯

  的飞速发展,纳米光刻技术作为一种重要的纳米结构和纳米器件制造技术,慢慢的受到人们的关注。尤其是电子束光刻技术(EBL),以其高分辨率和出色的灵活性在纳米光刻技术中发挥着无法替代的作用。电子束的束斑尺寸可聚焦到小于一个纳米,并可生成超高分辨率的图案。因此,EBL 在纳米电子学、纳米

  EBL系统是最重要的纳米制造设备,它集电子、机械、真空和计算机技术于一身。然而,对于许多教育或研究实验室来说,商用EBL系统的价格要昂贵得多,因为这些实验室只对创新器件的技术开发感兴趣。因此,一套高性能、低成本、操作灵活的EBL系统会是一个很好的解决方案。本文介绍了一套基于改装SEM搭建而成的EBL系统,它的组成主要是允许外部信号控制电子束位置的改装扫描电子显微镜、激光干涉仪控制工件台、多功能高速图案发生器和功能齐全、易于操作的软件系统。这种基于扫描电子显微镜的EBL系统操作灵活,成本低廉,在微电子学、微光学、微机械学和其他大多数微纳制造领域都有很大的应用潜力。

  EBL技术是从SEM发展而来的,还在于SEM的工作原理与EBL相似。因此,可以再一次进行选择合适的扫描电镜(SEM),并将其与电子束束闸(beam blanker)、纳米图形发生器(nanometer patterngenerator)、嵌入式精密工件台(embedded precision stage)和 EBL控制软件组装成EBL系统。主要部件如图1所示。这种基于扫描电子显微镜的EBL系统成本相对低廉、操作简便,在微纳制造领域具有良好的应用前景。

  (※嵌入式是指将、执行器、控制器等器件集成到机械设备中,通过嵌入式系统实现高精度控制和数据采集。这种技术主要应用于机器人自动化设备、医疗器械等领域,以提高设备的精度、稳定性和可靠性。)

  扫描电子显微镜是核心部件,为EBL系统提供电子光学系统。电子光学性能直接影响到EBL系统的分辨率和稳定性,因此必须选择正真适合的扫描电镜。经过分析和比较,我们发现热场发射扫描电镜在电子束束流的整体稳定性、最大化探针电流和降低电子束噪声以及对环境的敏感性等方面均优于冷场发射扫描电镜。扫描电子显微镜的基本功能是产生电子束、聚焦电子束和控制电子束的开和关,以此来实现电子束扫描。

  SEM平台的定位精度通常在1-5um之间,移动范围有限。因此不足以满足EBL扫描场拼接的要求。为实现高精度的现场拼接,需要用精密激光干涉仪控制平台。它由工件台机械结构、激光干涉仪测量系统、XY定位控制管理系统、CCD对位系统和自动传送平台控制管理系统组成。激光干涉仪测量系统和 XY 定位控制管理系统构成闭环测量控制管理系统,可将工件台定位在目标位置。CCD对位系统用于使硅片处于电子光学系统的焦深范围内,以获得最佳曝光效果。精准工件台的基本功能体现在两个方面:一是解决高分辨率与大面积曝光的矛盾,实现EBL扫描场拼接。由于电子光学像差和畸变的限制,电子束扫描场尺度受到限制,为了能够更好的保证分辨率和实现大面积曝光,必须装配精准工件台。第二个功能是实现精确定位,保证层与层之间的对准精度。

  图形发生器是利用扫描电子显微镜组装EBL系统的核心部件。图形发生器的基本功能是解释软件包生成的数据,并控制扫描电子显微镜的电子束偏转和电子束束闸的工作,以实现高分辨率电子束光刻。图2显示了图形发生器的硬件结构框图。它由操作控制单元、扫描单元、图像采集单元等组成。

  图形发生器在将图形数据(pattern data)转换为shot数据(shot data:曝光区域)的过程中需要高速度和高精度。因此,操作控制单元采用了DSP)。DSP具有强大的运算能力,可在80个时钟周期内完成32浮点运算的乘除运算。因此,圆、环 和其他复杂的曲线形状都能以极快的速度进行解释。

  扫描单元由两组 16 位数模转换器DAC) 控制。两组DAC均包括一个主DAC和三个乘法DAC。主DAC接收图形坐标,三个乘法DAC接收增益、偏移、旋转和工件台的位置修正。扫描单元还能产生blanking信号,以控制电子束束闸的工作。

  为了纠正扫描场失真,必须首先获取标准图像。图像采集单元的功能是扫描标记和标准象棋图形(chess graphics)以获取图像信息。主要部件是DAC。这一些数据由DAC将传感器采集的图像信息模拟信号转换为数据信号。这一些数据通过USB2.0接口传输到计算机并显示在屏幕上。

  EBL系统很复杂和精密,需要一个功能齐全、易于操作的软件系统来确保其正常运行。软件系统的基本功能包括初始化系统、生成曝光数据、检测系统组件的状态、校正扫描区域、传输曝光数据和参数和控制曝光过程。依据这一些功能要求,软件系统设计了三个模块:曝光布局处理功能模块、对位控制功能模块和曝光控制功能模块。软件系统是基于VisualC++6.0开发环境开发。曝光布局处理模块的最大的目的是生成曝光数据格式(EDF:exposure data format)文件。这需要经过两个过程,一个是曝光布局设计,另一个是格式转换。能够最终靠绘制和编辑图形直接设计各种布局。另一种创建曝光布局的方法是导入常见的工业布局(industrial layout),如 Caltech IntermediateFormat (CIF) 和 Graphic Design System II (GDSII) 格式文件,这一个文件都是可以方便地进行编辑的。文件格式的解析以BNF(Backus-Naur Form)规则为基础,采用递归下降解析法。无论是直接设计的布局,还是导入的常见工业布局,都可以传输到EDF文件中。

  对准控制模块用于实现扫描场对准和坐标对准。这能够最终靠扫描和获取标准棋盘图像、调整标记位置、计算校正参数并将其传送给图形发生器来实现。然后,图形发生器依据这一些校正参数控制电子束偏转再次扫描,完成扫描场和坐标对准。

  曝光控制模块是对曝光的全过程的控制,也是许多处理过程的最终程序和综合操作。曝光参数是确定曝光剂量的重要依据,它描述了曝光布局时抗蚀剂吸收电子能量的情况。不同的图形有不同的曝光剂量。计算公式如下:

  其中,A 是电子束的束流大小,单位为皮安(pA)。TA、TL和TD分别是区域、线和点的曝光停留时间,单位为毫秒(ms)。SA和SL分别是区域和线条的步长,单位为微米(um)。然后,从曝光布局处理模块获取的EDF文件,这些曝光参数被传输到图形发生器,图形发生器将根据存储在EDF文件中的布局信息控制电子束偏转。

  曝光实验是在基于JSM-35CFSEM的电子束光刻系统上进行的。曝光实验包括拼接实验、套刻实验和图案曝光。拼接和套刻精度是评价EBL设备性能的重要评价指标。

  如前所述,由于电子光学设计的限制,当蚀刻纳米结构图案时,EBL的单次曝光扫描场尺度会受到限制。因此为实现大面积曝光,EBL系统必须要具备写场拼接功能。然而,由于电子设备的漂移、电子光学镜筒的不同倍率等因素会导致扫描场的失真,因此,为了确认和保证拼接精度,有必要校准扫描场。校准可通过坐标系线性变换,其数学表达式如下如下所示:

  式中,dx、dy为实际位置与理想位置的偏差;x和y为标记的工件台位置;A、E代表移位参数;B、F代表增益参数;C、G代表旋转参数。为了求解这6个系数,需要在扫描场中设置3个标记,如图3所示。图形发生器控制SEM扫描这3个标记,得到实际的位置坐标。软件系统获取这些坐标并计算六个方程以获得校准系数,然后将这些参数发送到图形生成器。图形发生器的扫描单元依据这一些参数控制电子束偏转线圈。这样的一个过程会执行多次,直到获得精确的扫描场。

  拼接测试图案由软件直接设计。它是一个由100μm大小的游标光标字段组成的6×6阵列。每个场模式如图4所示。四个“L”图形是为了粗略观察拼接情况。每个字段的左上角为XY主游标,每个光标间隔2μm,右下角为XY副游标,每个光标间隔1.98μm。测量分辨率为20nm,测量范围为-200nm至+200nm。

  其中,n是样本采样数目,`x是样本平均值,σn是样本均方偏差。统计根据结果得出,本次曝光测试误差σx为31.19 nm,σy为26.53 nm。

  某些微机电系统(MEMS)结构与半导体制造需要用多层电子束光刻技术。在这一过程中,每一层图案都要经过曝光,然后去除以进行后处理。当这些硅芯片回到工作台时,其与工作台的相对位置会发生明显的变化。因此,为了能够更好的保证套刻精度,需要对芯片进行对位标记,确定芯片的位置和方位角。测试图案如图6所示。红色 XY 主游标为第一层,每个游标的间隔为2μm。蓝色XY副游标为第二层,每个游标的间隔为1.98μm。实际曝光图案是由这两层游标分别组成的两个100μm大小的6×6阵列场。每层图案都保存为一个曝光数据格式(EDF)文件。

  a. 将带标记的样品放入工作台,并进行坐标系校正,使平台坐标与硅片坐标保持一致。

  b. 将平台控制到曝光区域,并执行扫描场校正,然后曝光主游标的EDF文件。

  e. 控制平台至曝光区域,并执行扫描场校正,然后副游标的EDF文件进行曝光。

  该实验结果的SEM显微照片如图7所示。误差计算公式与拼接实验相同。统计根据结果得出,本次曝光测试误差σx为31.95 nm,σy为33.38 nm。

  上述实验证明了该基于改进SEM的EBL系统的可行性。该EBL系统可用于大规模微纳制造和功能性MEMS或微电子零件。该EBL制造系统功能强大、操作友好、成本低廉,能够完全满足大学实验室的大多数电子束光刻的应用。在量子效应器件、集成光学器件制造和纳米结构制造方面做出了很重要的贡献。

  文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

  显微镜,又扫描电镜(Scanning Electron Microscope,

  摘要:随着集成电路(IC)的复杂度逐步的提升,使用额外的成熟且有效的失效分析技能的能力变得重要起来。活性

  下方的蚀刻速率远高于没有金属时的蚀刻速率,因此当半导体正被蚀刻在下方时,金属层会下降到半导体中。4 本报告描述了使用 MacEtch 工艺制造 100 到 1000 nm 的

  和制造部的Yan Borodovsky表明,英特尔希望EUV或者无掩模

  结构制备技术 /

  麻省理工学院 (MIT)的研究人员表示,已经开发出一种技术,可望提升在芯片上写入图案的高速

  机 Electron Beam Lithography System 最大能容纳 300mmφ 的晶圆片和 6英寸的掩模版, 适合

  ***检漏 /

  技术开发及研究 /

  的参数优化及普遍的问题介绍 /

  鸿蒙开发接口图形图像:【@ohos.screenshot (屏幕截图)】

  华宝新能即将重磅发布全球首创全场景家庭绿电系统,构筑第二增长曲线 阅读

  嵌入式学习-飞凌嵌入式ElfBoard ELF 1板卡-如何移植NCNN?